Monitoring Simultaneous Distance and Orientation Changes in Discrete Dimers of DNA Linked Gold Nanoparticles.
نویسندگان
چکیده
Important optical properties of discrete pairs of DNA tethered gold nanoparticles, including their scattering cross-section and resonance wavelength, depend both on the dimer structure and the refractive index of their immediate environment. We show that far-field polarization microscopy aids the optical identification and interpretation of structural changes including hinge motions and nanoscale distance changes in individual assemblies. Grecco and Martinez have shown in their theoretical work that the interparticle separation dependent polarization anisotropy of discrete nanoparticle dimers enables nanoscale distance measurements (Optics Express 2006, 14, 8716 - 8721). Here we implement this approach experimentally and evaluate measured polarization anisotropies in the framework of a dipolar coupling model. We use polarization sensitive darkfield microscopy to resolve simultaneous distance and orientation changes during the compaction of discrete pairs of DNA tethered gold nanoparticles by fourth generation polyamidoamino (PAMAM) dendrimers. The relative contributions from interparticle separation and refractive index variations to changes in the light polarization and scattering intensity are quantified and compared.
منابع مشابه
Molecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملSingle-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations...
متن کاملMolecular identification of agrobacterium tumefaciens containing pCAMBIA 1305.2 plasmid using multiplex PCR and Gold nanoparticles multiplex probe
Conventional microbiology methods used to detect bacteria include multiple cultures and identification processes, so the results of lab work are painstaking and time-consuming. In recent years, more and more tend to use the diagnostic tests which are based on DNA; hence, DNA diagnostic biosensors have been created to perform DNA identification better. In this study, GUS and hpt genes were used ...
متن کاملGold nano-particles as electrochemical signal amplifier for immune-reaction monitoring
A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...
متن کاملTunable optical activity of plasmonic dimers assembled by DNA origami.
We investigate the optical response of gold nanorod (AuNR) dimers assembled in parallel on a DNA origami template. Plasmonic circular dichroism (CD) was found to be highly dependent on the orientation of the dimers relative to the DNA axis and the inter-rod distances. Dipole-dipole distances play a critical role in the induced plasmonic chirality. The orientation dependence of induced CD was fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. C, Nanomaterials and interfaces
دوره 113 26 شماره
صفحات -
تاریخ انتشار 2009